Identification of Geologic Fault Network Geometry by Using a Grid-Based Ensemble Kalman Filter
نویسنده
چکیده
Discrete geologic features such as faults and highly permeable embedded channels can significantly affect subsurface flow and transport characteristics. Therefore, they must be properly identified, parameterized, and represented in subsurface simulation models. In this work, we use an improved ensemble Kalman filter (EnKF) for history-matching fault network geometry from production data. EnKF is a sequential Monte Carlo data assimilation method that simultaneously propagates and updates an ensemble of model states, resulting in a set of calibrated model realizations that can be readily used for model prediction and uncertainty analysis. A pattern-based stochastic simulation algorithm was used to generate fault network realizations based on a priori fault trace data. The classic EnKF algorithm was enhanced with a grid-based covariance localization scheme to better handle non-Gaussian permeability distributions resulting from the presence of faults. Numerical experiments indicate that the modified EnKF can be a promising method for uncovering unmapped faults by using production data. DOI: 10.1061/(ASCE)HZ.1944-8376.0000072. © 2011 American Society of Civil Engineers. CE Database subject headings: Networks; Geometry; Simulation models; Kalman filters; Geological faults. Author keywords: Fault network simulation; Ensemble Kalman filter; Covariance localization; History matching; Model structural
منابع مشابه
Time Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter
In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملStator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter
This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...
متن کاملEnhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)
The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...
متن کاملA New Comprehensive Sensor Network Design Methodology for Complex Nonlinear Process Plants
This paper presents an optimal integrated instrumentation sensor network design methodology for complex nonlinear chemical process plants using a Combinatorial Particle Swarm Optimiazation (CPSO) engine. No comprehensive sensor network design approach has been addressed yet in the literature to simultaneously incorporate cost, precision and reliability requirements for nonlinear plant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011